Bacterial Genome Analysis Workflows: Staphopia and Bactopia

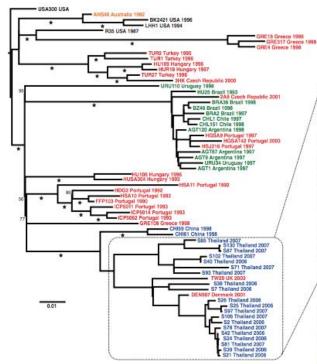
Timothy Read PhD Emory University School of Medicine tread@emory.edu @tdread_emory

No financial conflicts

Abstract

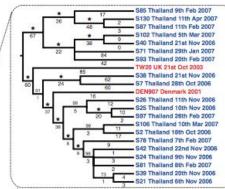
"Technology innovations in genomics that reduce sequencing time and cost have created new opportunities for biological research. Since the mid 2000's, large scale sequencing of bacterial genomes using Illumina technology has become a standard for pathogen epidemiology studies, resulting in very large data sets for some species. Genome data has been generated faster than can be conveniently analyzed and integrated with results of classical experimental approaches to microbiology. We became interested in the task of analyzing tens of thousands of genomes of the pathogenic bacterium *Staphylococcus aureus* in the public domain. We created a workflow called the Staphopia Analysis Pipeline (StAP), using Nextflow software, to automate processing (e.g QC, genome assembly, annotation, genotype) using open source bioinformatic tools and databases. The pipeline was encapsulated in a Docker container to allow it to be deployed across software platforms. We collaborated with the Cancer Genomics Cloud and used their Seven Bridges-based platform to process >40,000 genomes in a 10 day period in November 2017. A public instance of StAp was also created at CGC to allow anonymous users to run StAP on their own data. In order to share the results of our analysis with other researches we created the Staphopia database, with public APIs for data download of > 350 endpoints and an R package to enhance data analysis. We have been using Staphopia as both a resource to generate hypotheses ("top-down approaches") and also to understand how results from lab studies relate to the species as a whole ("bottom-up").

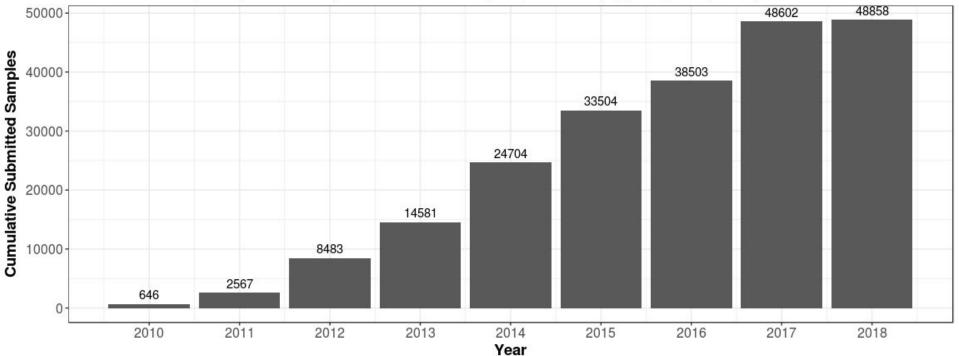
An example of the former analysis is looking at the co-occurrence of resistance to mupirocin and fluoroquinolones with methicillin resistance (MRSA). An example of bottom-up approaches has been mapping the distribution SNPs found to be associated with intermediate vancomycin resistance selected in the laboratory across different subtypes of *S. aureus*. We have recently created a new series of pipelines called Bactopia, built on the experiences learned from Staphopia but generalizable to any bacterial species. Bactopia consists of a dataset setup step (Bactopia Datasets) where a series of customizable dataset are created for the species on interest. The Bactopia Analysis Pipeline performs analyses based on the dataset downloaded and outputs the processed data to a structured directory format. We have created a series of Bactopia Tools that perform specific post-processing on some or all of the genomes processed. These include pan-genome analysis, computing average nucleotide identity between samples, extracting and profiling the 16S genes and taxonomic classification" via gtdb. We have performed a Bactopia demonstration project on 1664 public *Lactobacillus* genomes in SRA in December 2019.


Staphopia

Illumina GA II

2010




Fig. 1. Phylogenetic evidence for intercontinental spread and hospital transmission of ST239 isolates. Maximum likelihood phylogenetic tree based on core genome SNPs of ST239 isolates, annotated with the country and year of isolation. The continental origin of each isolate is indicated by the color of the isolate name: blue, Asia; black, North America; green, South America; red, Europe; and yellow, Australasia. Bootstrap values are shown below each branch, with a star representing 100% bootstrap support. The scale bar represents substitutions per SNP site. A cladogram of the Thai clade is displayed for

Harris, S. R. et al. Evolution of MRSA During Hospital Transmission and Intercontinental Spread. Science 327, 469–474 (2010)

greater resolution with bootstrap values (above the branch), number of distinguishing SNPs (below the branch), and isolates labeled with date of isolation, where known.

2018

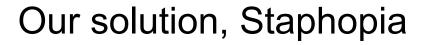
Cumulative total of publicly available sequenced S. aureus samples (N = 48,858) by year (2010-present).

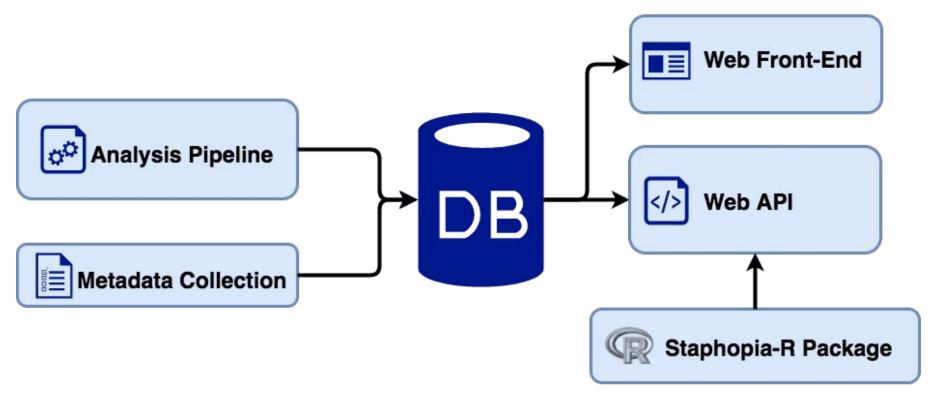
Why would you want to analyze WGS?

- 1. Immediate payoff e.g antibiotic resistance profile of individual isolates
- 2. Retrospectively look for trends, when important genes appeared etc
- 3. Going forward: identify potential outbreaks, changing patterns of antibiotic resistance

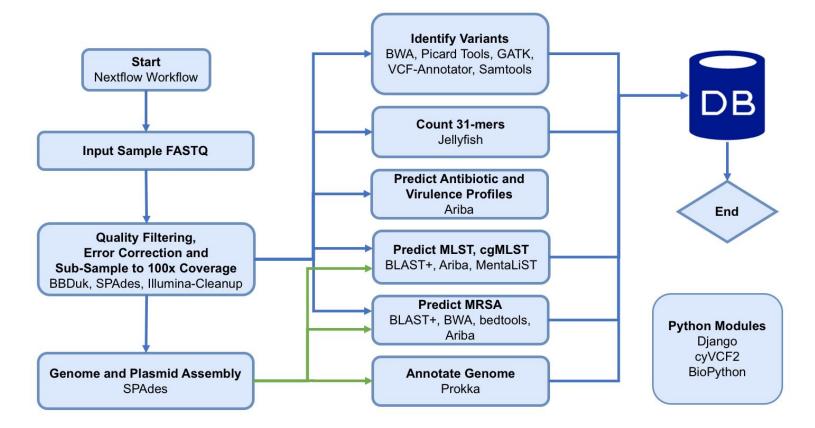
Success brings Challenges

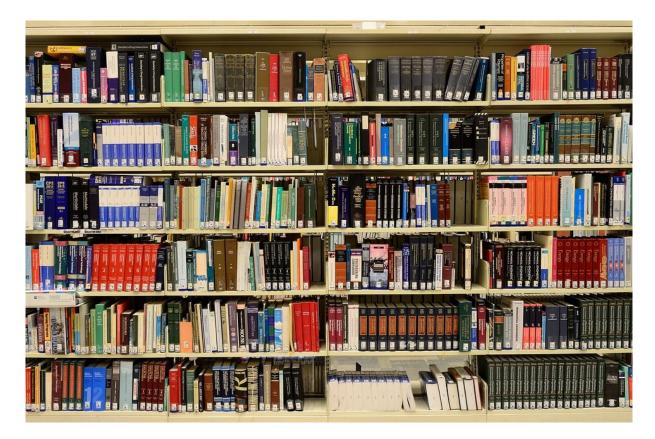
Unassembled raw data


Impossible to screen SNPs/ genetic variants


Don't know about antibiotic resistance genes, MLST etc,

			ncbi.nlm.nih.gov	C					
Mail - tread@emory.edu	(*) Twitter		Instructors/2018-staphopia_practical.Rmd at ma iTOL: Copy of RAxML_bipartitionsBranchLabels		RStudio - US			(staphylococcus aureus) AND *Staphylococcus	
	S NCBI Resources 🗹 I	How To 🕑			tdread N	IV NCBI	Sign Out		
	SRA	SRA	c (staphylococcus aureus) AND "Staphylococcus aureus"[orgn:txid1280]	0	Search				
			Create alert Advanced				Help) <u>6</u>
					1.050				
	Access	Summary		Filters: Manage	Filters				
	Public (51,786)					_			
	Source DNA (50.825)	Search	results	Results by tax			-		
	RNA (822)	Items: 1	to 20 of 52295 <<< First < Prov Page 1 of 2615 Next > Last >>	Top Organisms [Tree] Staphylococcus aureus (52293)					
	Туре			unidentified (2	2)				
	exome (1)	U WGS	of Staphylococcus aureus : ST72	More					
	gename (50,946)		JMINA (Illumina MiSeq) run: 1.4M spots, 507.5M bases, 240.2Mb downloads				_		
	Other	Acces	cession: SRX3734239	Search in related databases					
	aligned data (25,476)	U WGS	of Staphylococcus aureus : ST72		Acce				
	Clear all		JMINA (Illumina MiSeq) run: 1.7M spots, 614.6M bases, 300Mb downloads	Database	public ce		all		
	Show additional filters	Acces	sion: SRX3734238	BioSample	47,346		47,346		
		□ WGS	of Staphylococcus aureus : ST72	BioProject	4.497		4.497		
			JMINA (Illumina MiSeq) run: 1.3M spots, 419.7M bases, 248.9Mb downloads	dbGaP		3	3		
		Acces	sion: SRX3734237	GEO Datasets	552		552		
		U WGS	of Staphylococcus aureus : ST72						
			JMINA (Illumina MISeq) run: 2.1M spots, 669.6M bases, 305.8Mb downloads	Find related da	ata				
		Acces	sion: SRX3734236	Database: Selec					
		WGS	of Staphylococcus aureus : ST72						
			JMINA (Illumina MISeq) run: 1.7M spots, 595.7M bases, 285.8Mb downloads						
		Acces	sion: SRX3734235						
			of Staphylococcus aureus : ST72	Search details					
			JMINA (illumina MISeq) run: 2.3M spots, 726.3M bases, 329.7Mb downloads sion: SRX3734234	("Staphyloco	ocus aureu	s"[Orga	nisml		
		Acces	sion: SRX3734234	OR staphyloc Fields]) AND	coccus aure	us[All	Carcola an		
			of Staphylococcus aureus : ST72	aureus"[orgn		coccus			
			JMINA (Illumina MiSeq) run: 1.7M spots, 614.1M bases, 282.5Mb downloads sion: SRX3734233				ß		
		ACOR	SIUT: STCA3734233	Search		S	ee more		
			seg of Staphylococcus aureus: control RNA						
			JMINA (Illumina MISeq) run: 537,491 spots, 57.8M bases, 23.5Mb downloads sion: SRX3679682	Recent activity					
		Auces	and the second second			Tum	Off Clear		
			seq of Staphylococcus aureus: control RNA	Q (staphylocod	ccus aureus) /				
			JMINA (Illumina MiSeq) run: 74,418 spots, 7.5M bases, 2.9Mb downloads sion: SRX3679681		ccus aureus"(195) SRA		
				Q staphylococ	cus aureus (5	4056)			
			L_StudyMH3				SRA		
			JMINA (Illumina MiSeq) run: 787,606 spots, 412.3M bases, 241.7Mb downloads sion: SRX3652525		Long-term Microevolution of Pseudomonas aeruginosa Differs Between Mildly and PubMed				
				Pathogen: d					
			LStudyMH4 JMINA (Illumina MiSea) run: 902.711 spots. 392.6M bases. 229.4Mb downloads		lococcus aure		biosample		
			MINA (IIumina Miseq) run: 902,711 spots, 392.6M bases, 229.4Mb downloads sion: SRX3652524	Q aureus 2395	5 (1)				
		Land					BioSample		
			LStudyMH1			s	ee more		
		12. 1 ILLI	JMINA (Ilumina MiSeq) run: 2.3M spots, 624.1M bases, 325.4Mb downloads				_		


It's all there, you just have to organize it yourself!



The Staphopia Analysis Pipeline

"Public Library" for S. aureus Genomics

Our Problem

- Each sample takes ~50 minutes to complete the analysis.
 - We can convert this to total cpu time: N * CPU_MINUTES
 - Our case: 44k * 50 = 2,203,350 CPU Minutes
- Translation to real time:
 - Only 1 sample at a time, equates to 4+ years of real time
 - Our current infrastructure:
 - Maxing Out Each Server: 18 at a time, or 90 days
 - Servers could not be used by others!
 - Realistically: 4 8 at a time, or 200 400 days

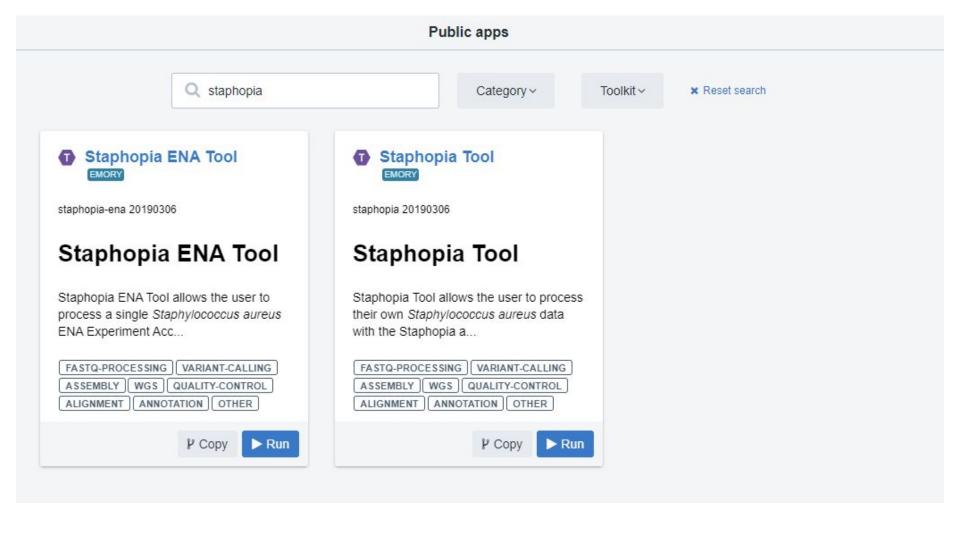
Got lucky! Asked to test a human genomics cloud platform!

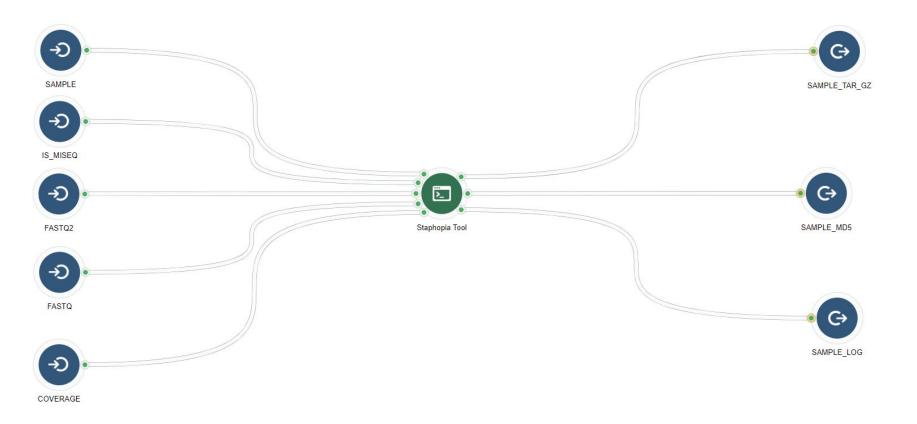
- In August 2017, we became aware of the Cancer Genomics Cloud (CGC) platform
- Developed for human genomics, unsure whether it could handle microbial genomics
 - Few very large jobs vs Many very small jobs

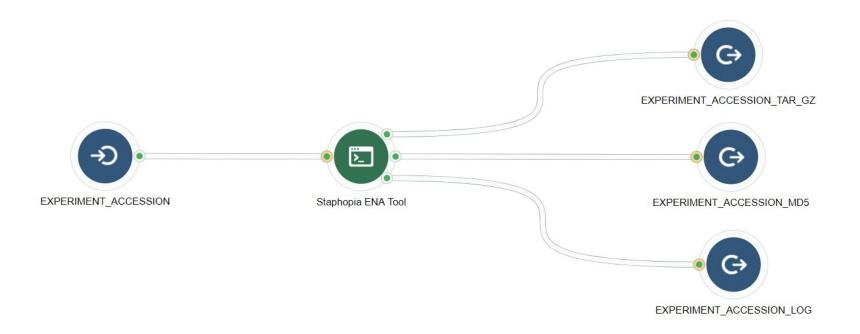
Cancer Genomics Cloud (CGC) Platform

- <u>http://www.cancergenomicscloud.org/</u>
- Executes Docker based workflows on Amazon Web Services (AWS) cloud
- Intuitive front-end is easy to use
- API packages included for R and Python
 - Work amazingly!

A realistic opportunity to process 44k genomes


- Estimated ~\$2,200 and ~3 weeks to analyse all 44k S. aureus genomes
 Or, \$0.05 per genome
- Most importantly, presented the opportunity to completely rewrite the analysis pipeline
 - Ruffus hadn't been updated in over two years, looked to be abandoned
 - Although, recently updated November 4th, 2018
 - Some outdated methods from 2015
- Rewrote the pipeline using Nextflow with more up to date methods
 - Dropped large tarball for BioConda installable packages
 - Dockerized the pipeline


Successfully processed 44k genomes!


- It only took only 11 days to complete
 - Instance limit was increased temporarily to 200
- Only 202 jobs failed:
 - Most were due to ENA timeouts or SPAdes asking for > 32GB memory
- Pushed the CGC platform to its limits
 - Helped uncover a few a bugs
 - Provided a great use case for CGC
- Almost 10TB of data was generated
 - Fortunately this was downloaded as jobs completed

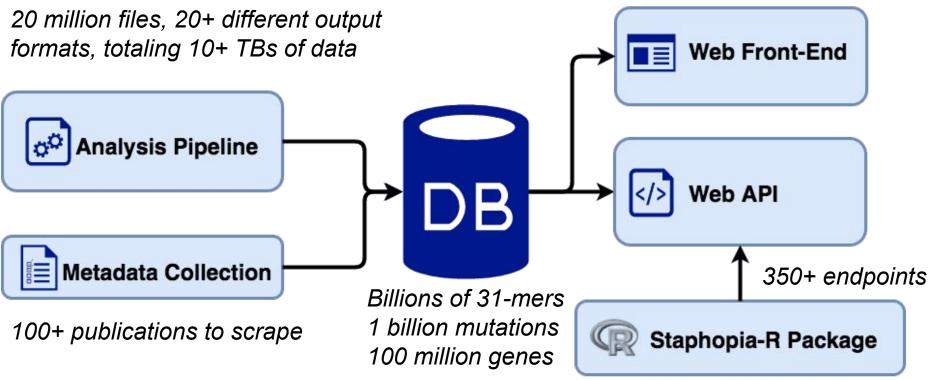
Staphopia available as a public app on CGC

- Uses the Staphopia Docker image
- Any user can run Staphopia on the CGC either from FASTQ or directly from ENA

2017 analysis breakdown

- In November 2017 there were **43,972** Illumina *S. aureus* projects
- **42,949** were uncontaminated *S. aureus* genomes
- **42,337** of these genomes were assigned to 1,090 STs (of 4,466 in the PubMLST database)

Petit RA 3rd, Read TD. Staphylococcus aureus viewed from the perspective of 40,000+ genomes. PeerJ [Internet]. 2018 Jul 12;6:e5261. Available from: http://dx.doi.org/10.7717/peerj.5261 PMCID: PMC6046195


Other notable highlights of Staphopia

- Built in cross-validation of methods for 44k samples
 - MLST Mapping vs k-mer vs Alignments
 - SCCmec Mapping vs In-silico PCR
- Evidence for sub-sampling to 100x coverage
 - No need for 300x coverage, when 100x will get you the same results except faster
- Extensive effort to link metadata to genomes
 - Text-mining PDFs for accessions
- Real-world example of costs associated with genomic analysis in the cloud

Staphopia's API and R Package

- Provides direct access to an extensive set of results
 - 350+ endpoints are accessible
 - Built using <u>Django Rest Framework</u>
- Created an R package, Staphopia-R
 - Allows programmatic access
 - Reproducible R Notebooks
 - Used to generate results in publication
 - https://github.com/staphopia/staphopia-paper/tree/master/analysis

Data management logistics...

Multiple codebase changes

Staphylococcus aureus viewed from the perspective of 40,000+ genomes

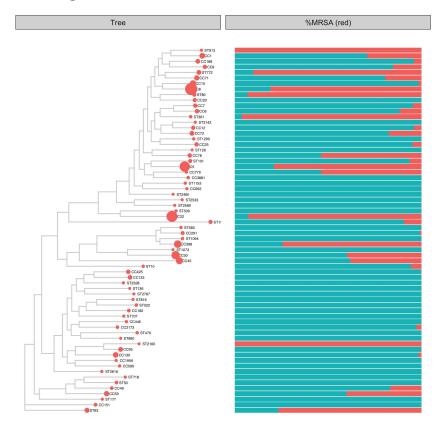
Robert A. Petit III and Timothy D. Read

Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA

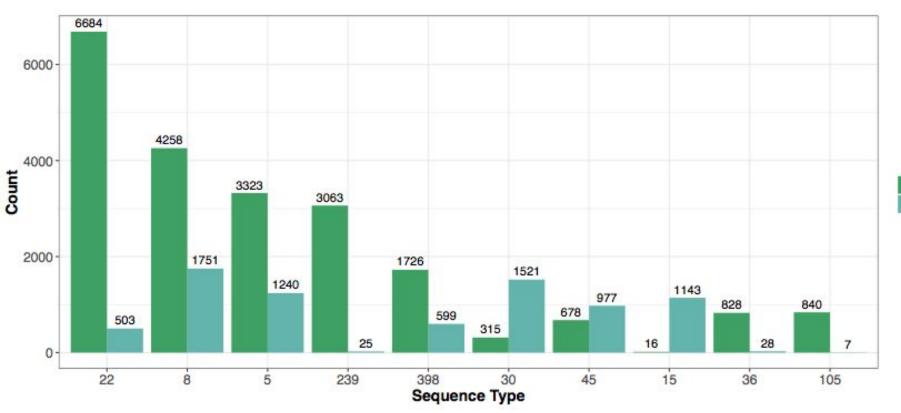
Published in PeerJ (July 2018): https://peerj.com/articles/5261/

What sorts of analyses can you do with these data?

Identifying MRSA


- Multiple approaches
 - In silico PCR
 - Protein alignments of mecA
 - Local assembly of mecA

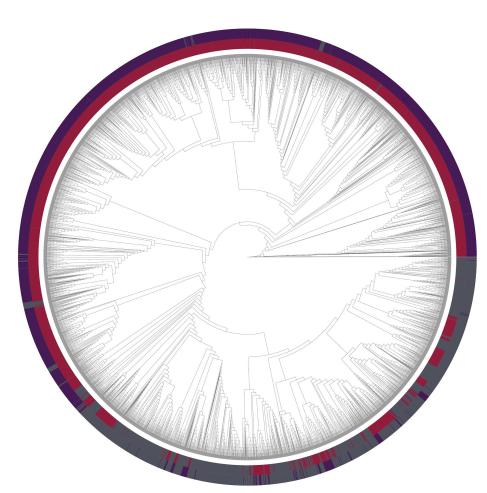
Identifying MRSA


• Multiple approaches

- \circ In silico PCR \rightarrow 26,743 samples
- \circ Protein alignments of mecA \rightarrow 26,430 samples
- \circ Local assembly of mecA \rightarrow 27,120 samples
- 64% (27,548) of samples predicted to be MRSA by at least one approach
 - 95% of samples agree between each each

MRSA across major Clonal Groups

MRSA is over-represented in top STs



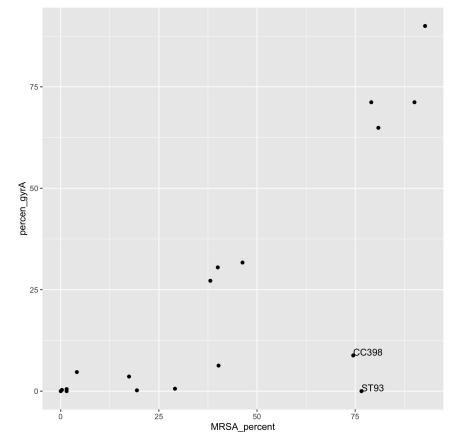
MRSA MSSA

Relationships between MRSA, FQ and other inferred resistance

- 20,498 have one of five most common mutations in gyrA, grIA/B
- What is the relationship between FQ resistance and MRSA?

ST5 FQ resistance

Mike Martin


Ancestral state reconstruction shows multiple independent acquisitions of resistance

ResistantSusceptible

Mike Martin

FQ resistance mutation associated with MRSA

Each point represents a Clonal Complex with more than 300 strains

CC398 and ST93 associated with animals

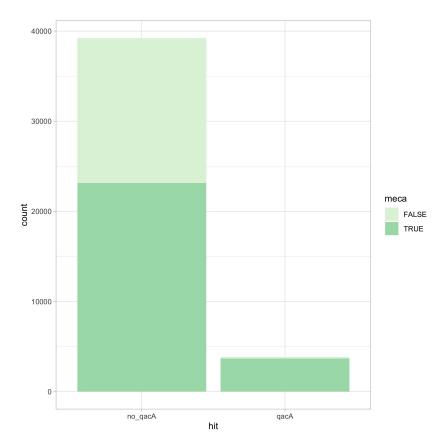
RESEARCH ARTICLE

Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock

Lance B. Price,^a Marc Stegger,^b Henrik Hasman,^c Maliha Aziz,^a Jesper Larsen,^b Paal Skytt Andersen,^b Talima Pearson,^d Andrew E. Waters,^a Jeffrey T. Foster,^d James Schupp,^a John Gillece,^a Elizabeth Driebe,^a Cindy M. Liu,^{a,d} Burkhard Springer,^e Irena Zdovc,^f Antonio Battisti,^g Alessia Franco,^g Jacek Żmudzki,^h Stefan Schwarz,ⁱ Patrick Butaye,^{j,k} Eric Jouy,¹ Constanca Pomba,^m M. Concepción Porrero,ⁿ Raymond Ruimy,^o Tara C. Smith,^p D. Ashley Robinson,^q J. Scott Weese,^r Carmen Sofia Arriola,^s Fangyou Yu,^t Frederic Laurent,^u Paul Keim,^{a,d} Robert Skov,^b and Frank M. Aarestrup^c

J Glob Antimicrob Resist. 2018 Sep;14:161-165. doi: 10.1016/j.jgar.2018.03.013. Epub 2018 Apr 3.

Genetic characterisation of Staphylococcus aureus isolated from milk and nasal samples of healthy cows in Tunisia: First report of ST97-t267-agrl-SCCmecV MRSA of bovine origin in Tunisia.

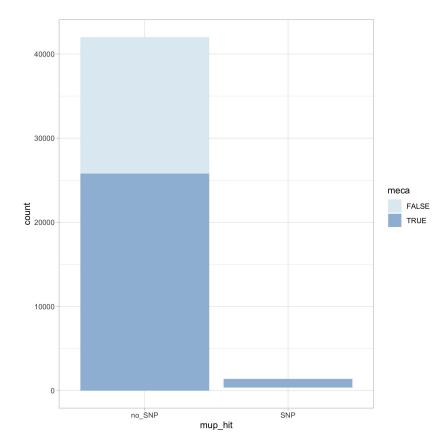

Khemiri M¹, Abbassi MS², Couto N³, Mansouri R⁴, Hammami S⁵, Pomba C⁶.

Author information

qacA

- Chlorhexidine (CHX) is a biocide used increasingly commonly for *S. aureus* decolonization
- *qacA* is usually a plasmid-borne gene that encodes a muli-drug efflux pump associated with reduced CHX resistance
- 3,371 strains have *qacA* gene

qacA versus MRSA



Mupirocin Resistance

- Mupirocin is topical antibiotic that is a commonly used to treat Staph infections of the skin
- Yokoyama et al. 2018 reported a SNP associated with Mupirocin Resistance in the gene *ileS* (V588F)
- 1,402 strains have *ileS* V588F mutations

M. Yokoyama *et al.*, Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA. *Genome Biol.* **19**, 94 (2018).

Mupirocin versus MRSA

Bactopia

What is Bactopia?

Bactopia is an extensive workflow for processing Illumina sequencing of bacterial genomes. The goal of Bactopia is process your data with a broad set of tools, so that you can get to the fun part of analyses quicker!

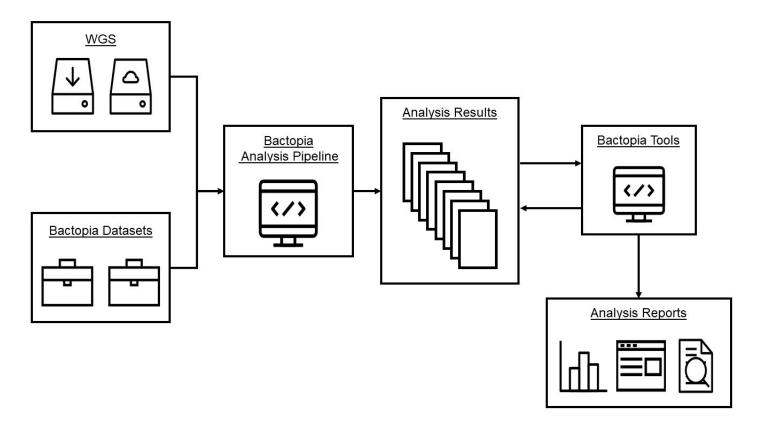
Bactopia Philosophy

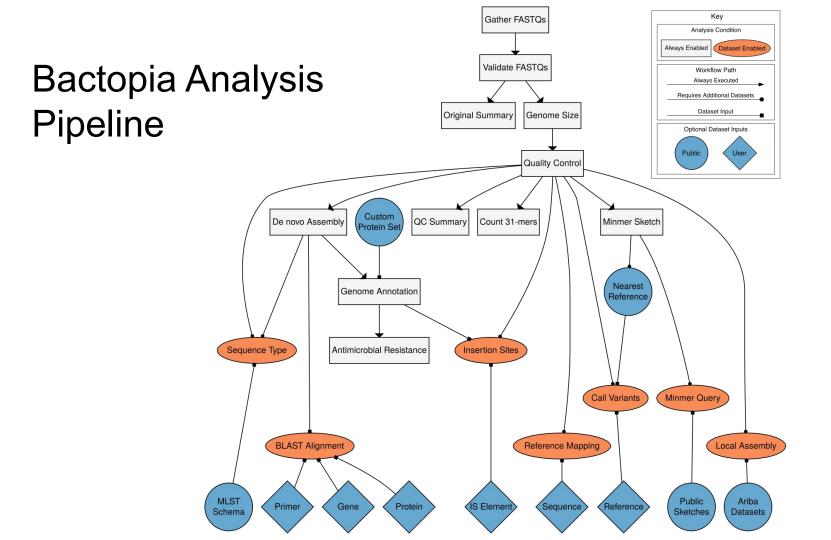
- 1. Conda First
 - a. Available from official channel (Bioconda, conda-forge, defaults, etc...)
 - b. If not available, can I create a recipe?

2. Flexible & Portable

- a. Fit your needs (100+ adjustable parameters)
- b. Easy to install (Conda, Docker, Singularity)
- c. Easy to switch between environments (local, cluster, cloud)
- 3. Documentation
 - a. Too much is better than too little
 - b. When in doubt document it!

Three Sides of Bactopia


Bactopia Datasets


• Framework for including available public and user created datasets

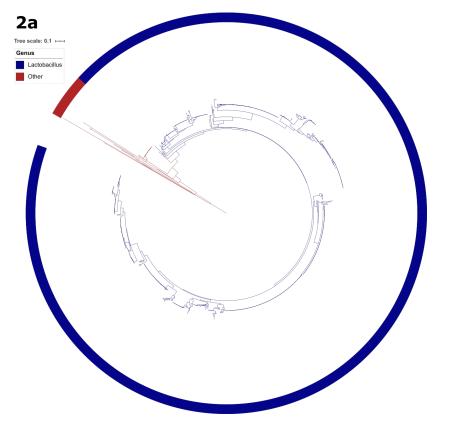
Bactopia Analysis Pipeline

- Main *per-isolate* workflow
- Bactopia Tools
 - Independent workflows for *comparative* analyses

Bactopia Overview

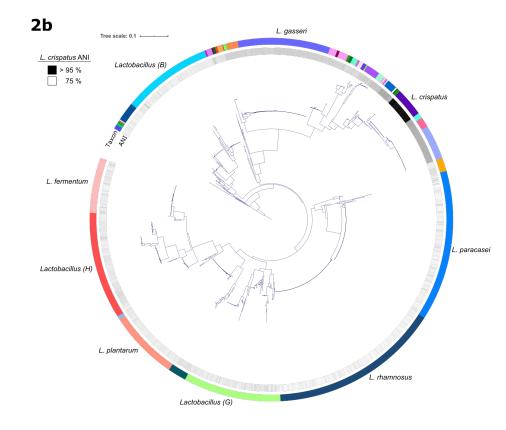
Bactopia Use Case: Lactobacillus genus

- Run all publicly available "Lactobacillus" genomes through Bactopia
 - Build *Lactobacillus* datasets
 - Query ENA for available Lactobacillus genomes
 - Run SRA/ENA genomes through Bactopia Analysis Pipeline
 - Bactopia will download genomes automatically
 - Apply Bactopia Tools to describe the genus
 - Sequence quality summary
 - 16S phylogeny with taxon classifications
 - Core-genome on a subset of samples


What's does the sequence data look like?

Quality Rank	Count	Original Coverage (Median)	Post-Bactopia Coverage (Median)	Per-Read Quality Score (Median)	Read Length (Median)	Contig Count (Median)	Percent of Assembled Genome Size compared to Estimated Genome Size (Median)
Gold	967	213x	100x	Q35	100bp	54	92%
Silver	386	160x	100x	Q35	100	97	93%
Bronze	205	102x	100x	Q34	99	90	95%
Exclude	48	26x	22x	Q34	95	706	93%
QC Failure	58	_	-	-	-	-	-

Not everything is *Lactobacillus*


- 16S rRNA gene phylogeny • Bactopia Tool - phyloflash
- Taxon classified by GTDB

 Bactopia Tool gtdb
- 58 samples not Lacto
 - 34 samples are *S. pneumoniae*
- ~33% of the GTDB classifications in conflict with the NCBI taxon

Major groups of Lactobacillus

- 5 species make of ~45% of the available genomes
 - L. rhamnosus (n=225)
 - L. paracasei (n=180)
 - L. gasseri (n=132)
 - L. plantarum (n=86)
 - *L. fermentum* (n=80)
- *L. crispatus* genomes are easily identified by ANI
 - Bactopia Tool fastani

Lactobacillus crispatus

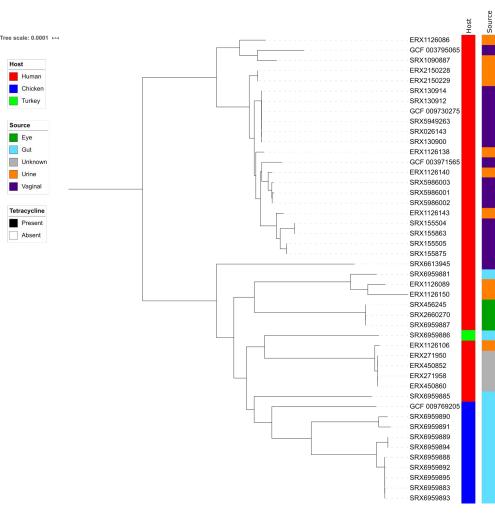
Commonly isolated from human vagina and guts/feces of poultry Host

Human

Turkey

Source

Eye


Gut

Urine

Vaginal

Absent

- Core-genome phylogeny of genomes with >95 ANI to L. crispatus
 - Bactopia Tool Roary 0
- All samples from chickens had presence of Tetracycline resistance gene

Tetracyo

Use Summary

- We demonstrate how Bactopia can:
 - Build datasets
 - Query ENA for publicly available genomes
 - Process publicly available genomes
 - Conduct comparative analyses
 - Summary report
 - summary tool, also creates list of samples to exclude from downstream analysis
 - 16S phylogeny (
 - phyloflash and gtdb tools
 - Core-genome on subset of samples
 - fastani \rightarrow roary tools

Preprint

https://www.biorxiv.org/content/10.1101/2020.02.28.969394v1.full

THE PREPRINT SERVER FOR BIOLOGY

HOME | ABOL

Search

bioRxiv is receiving many new papers on coronavirus 2019-nCoV. A reminder: these are preliminary reports that have not been peer practice/health-related behavior, or be reported in news media as established information.

New Results

Comment	on	this	pa	per
---------	----	------	----	-----

Bactopia: a flexible pipeline for complete analysis of bacterial genomes

💿 Robert A. Petit III, 💿 Timothy D. Read

doi: https://doi.org/10.1101/2020.02.28.969394

This article is a preprint and has not been certified by peer review [what does this mean?].

Abstract

What's next for Bactopia?

- Hopefully a useful resource for community
 - Will help to polish it and get a sense of what people want
- More Bactopia Tools
 - mashtree, hicap, bactdate, pyseer, poppunk, bigsi, etc...
- Implement long-read support (eventually)
 - Illumina is still 90+% of the data available and what we generate
 - Long-read is advancing to quickly at the moment
- Process 70,000 Staphylococcus aureus genomes
 - All on AWS and the basis for Staphopia v2

Acknowledgements

Robert Petit

Monica Farley, Michelle Su, Jon Moller, Tauqeer Alam, Sandeep Joseph, Steve Tsang, Michelle Wright, Mike Martin, Ashley Alexander, Ahmed Babiker

<u>CGC</u>

Erik Lehnert, Natasha Bezmarevic, Uros Sipetic, Manisha Ray

Funding: NIAID, Amazon in Education Award, National Cancer Institute, CDC Emerging Infection Program (EIP)

Staphopia Links

- Currently hosted at: <u>https://staphopia.emory.edu/</u>
- Open Source and Available on GitHub: <u>https://github.com/staphopia</u>
- Docker Container Available: <u>https://hub.docker.com/r/rpetit3/staphopia/</u>

Bactopia Links

- Documentation
 - https://bactopia.github.io/
- Github
 - https://github.com/bactopia/bactopia/
- Bioconda
 - https://bioconda.github.io/recipes/bactopia/README.html
- Docker
 - https://hub.docker.com/u/bactopia
- Singularity
 - <u>https://cloud.sylabs.io/library/rpetit3/bactopia</u>

Alternatives to Bactopia

- <u>Nullarbor</u>
 - "Reads to report" for public health and clinical microbiology
- <u>ASA³P</u>
 - A scalable bacterial genome assembly, annotation and analysis pipeline
- <u>TORMES</u>
 - Making whole genome bacterial sequencing data analysis easy

QuAISAR-H

 Pipeline to determine Quality, Assembly, Identification, Sequence type, Annotation, Resistance mechanisms for hospital acquired infections